Introducing our Snowflake Data Cloud Native Application: AI-Driven Data Quality built into SQL statements! Learn More

AI-Powered Organization Name Matching as a Native Application on Snowflake

Easily Access Interzoid's Organization and Company Name Matching API within SQL Statements on the Snowflake Data Cloud.

Snowflake Native App

Access Interzoid Pre-Integrated on Snowflake

Identify data inconsistency and similarity with a single SQL query.

Examples of Inconsistent Data
Snowflake Marketplace
Discover on Snowflake Marketplace

Explore, learn, and launch our app directly from the Snowflake Marketplace. Elevate your data quality today!

Get App
Once the native application is added to your Snowflake account with a one-click install, the following SQL query is all you need to identify and cluster similar and inconsistently-spelled organization names in any Snowflake data table:
SELECT org,interzoid_org_match_app.core.org_simkey(org) AS org_key
FROM organizations
ORDER BY org_key;

Sample Matches (Sorted by Similarity Key)

Company Input Similarity Key
Toyota Corportn tmOnl2ryWlUguo7nebVhQ4WQnQ4PvxAd81MHwa_y_to
Tyota Corp (Japan) tmOnl2ryWlUguo7nebVhQ4WQnQ4PvxAd81MHwa_y_to
Petrobras wjcn9qPNvLPrJhuS6jbWF6UGRjgaVpYVjzyqJOdgcaM
Petrobass wjcn9qPNvLPrJhuS6jbWF6UGRjgaVpYVjzyqJOdgcaM
Petroleo Brasileiro S.A wjcn9qPNvLPrJhuS6jbWF6UGRjgaVpYVjzyqJOdgcaM
BMW qLAoXfmrTOrT8lcGlrZ2bDELo2swEzXmg53zLWdOyqQ
Bayerische Motoren Werke AG qLAoXfmrTOrT8lcGlrZ2bDELo2swEzXmg53zLWdOyqQ
Bayerische Motor Werke (BMW) qLAoXfmrTOrT8lcGlrZ2bDELo2swEzXmg53zLWdOyqQ
BNP Paribas YxBvAZ3lbgyoeCuUrTn19LIASoh3rJhZjcCan79cveM
Bank BNP Paribas YxBvAZ3lbgyoeCuUrTn19LIASoh3rJhZjcCan79cveM
PetroChina Co. Ltd. F9rv2yIYDB2IveLHuzb3XjecwJ1BYdTQQW77dvyoBDQ
Petro-China F9rv2yIYDB2IveLHuzb3XjecwJ1BYdTQQW77dvyoBDQ
PetroChina Company Limited F9rv2yIYDB2IveLHuzb3XjecwJ1BYdTQQW77dvyoBDQ
Banco Santander i5I9QIUydH_dP6ldIuZjJrhGpp80PJNSbbJNxwj5APc
Santander Group i5I9QIUydH_dP6ldIuZjJrhGpp80PJNSbbJNxwj5APc
Santandr Bank i5I9QIUydH_dP6ldIuZjJrhGpp80PJNSbbJNxwj5APc
Banco Santander S.A. i5I9QIUydH_dP6ldIuZjJrhGpp80PJNSbbJNxwj5APc
Piraeus Bank FNC2_dtk9AZlRN8Ot0Ykzywe8Ims6adAmzwO5qphZEo
Πειραιώς FNC2_dtk9AZlRN8Ot0Ykzywe8Ims6adAmzwO5qphZEo
Pireaus Financil Hlndgs FNC2_dtk9AZlRN8Ot0Ykzywe8Ims6adAmzwO5qphZEo
BİM Berleşik Mağazaler VJ4Oq6hOxmeZteC1EDJT4eQel1vWQxTpfHquDORJwfk
B.I.M. Birlesik VJ4Oq6hOxmeZteC1EDJT4eQel1vWQxTpfHquDORJwfk
BİM Birleşik Mağazalar A.Ş. VJ4Oq6hOxmeZteC1EDJT4eQel1vWQxTpfHquDORJwfk
Ohio State dKI2aritgyzM9y4HToDqOC6s9I7-SNwGG-2x9rzDyms
Ohio State-Lima Campus dKI2aritgyzM9y4HToDqOC6s9I7-SNwGG-2x9rzDyms
The Ohio State University dKI2aritgyzM9y4HToDqOC6s9I7-SNwGG-2x9rzDyms
OSU-Mansfield dKI2aritgyzM9y4HToDqOC6s9I7-SNwGG-2x9rzDyms
OH STATE dKI2aritgyzM9y4HToDqOC6s9I7-SNwGG-2x9rzDyms
OSU Buckeyes dKI2aritgyzM9y4HToDqOC6s9I7-SNwGG-2x9rzDyms
PJSC Gazprom 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Gazprom 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Gazprom Russia 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
GAZPROM PAO 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Gaz prom 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Gazprom Bank 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Gazprom Neft 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Gazpormbank 1suDF2FsbuCUBPosATljOVw_ovw_RznDTI4DF6X2wTg
Saudi Aramco yv8uxP9JjwCRWBNyUyFTds63QmZTT4qhFXfpv-wRbiM
Saudi Arabia Aramco yv8uxP9JjwCRWBNyUyFTds63QmZTT4qhFXfpv-wRbiM
ARAMCO yv8uxP9JjwCRWBNyUyFTds63QmZTT4qhFXfpv-wRbiM
Arabian Oil Co yv8uxP9JjwCRWBNyUyFTds63QmZTT4qhFXfpv-wRbiM
Saudi Arabian Oil Group yv8uxP9JjwCRWBNyUyFTds63QmZTT4qhFXfpv-wRbiM
PetroVietnam gVzS9hXt8FdAISVdnB7uisfT2DzIzRfGKgdKz2JmnJc
PV Group gVzS9hXt8FdAISVdnB7uisfT2DzIzRfGKgdKz2JmnJc
Vietnam Oil and Gas Group gVzS9hXt8FdAISVdnB7uisfT2DzIzRfGKgdKz2JmnJc
PetroVietnam Oil gVzS9hXt8FdAISVdnB7uisfT2DzIzRfGKgdKz2JmnJc
Petro Vietnam gVzS9hXt8FdAISVdnB7uisfT2DzIzRfGKgdKz2JmnJc
Telstra UPX0mTXBoeAc-ohSWZkDQSOPTDJ3g71F8t7KY6g7ZEM
Tellstra UPX0mTXBoeAc-ohSWZkDQSOPTDJ3g71F8t7KY6g7ZEM
Telstra Mobil UPX0mTXBoeAc-ohSWZkDQSOPTDJ3g71F8t7KY6g7ZEM
Telcom TELSTRA UPX0mTXBoeAc-ohSWZkDQSOPTDJ3g71F8t7KY6g7ZEM
SShoprite Holdings Ltd L0_xrhEEpDWbh2zsrCc97aozrhWd5pXZDZUm1r7gayk
Shop Rite LTD L0_xrhEEpDWbh2zsrCc97aozrhWd5pXZDZUm1r7gayk
Shoprite S Africa L0_xrhEEpDWbh2zsrCc97aozrhWd5pXZDZUm1r7gayk
Snowflake zPXpUnLwdW0UtBh8kNE4gA6DgwFBNzkm0djgmnyjgaM
snoflake inc zPXpUnLwdW0UtBh8kNE4gA6DgwFBNzkm0djgmnyjgaM
SNOW FLAKE CORP zPXpUnLwdW0UtBh8kNE4gA6DgwFBNzkm0djgmnyjgaM
Microsoft Inc xUhcrilUNsRiCthe7rXkIupHiCbhhgyLrKNAcXruwoA
microsot xUhcrilUNsRiCthe7rXkIupHiCbhhgyLrKNAcXruwoA
MICROS0FT xUhcrilUNsRiCthe7rXkIupHiCbhhgyLrKNAcXruwoA
IBM edplDLsBWcH9Sa7ZECaJx8KiEl5lvMWAa6ackCA4azs
Intl businessmachines edplDLsBWcH9Sa7ZECaJx8KiEl5lvMWAa6ackCA4azs
Amazon.com tyGzXZjfZUqhgqt6mqNZF8MCsn-QQV1NJbysxSTB7aI
Amazon Incorp. tyGzXZjfZUqhgqt6mqNZF8MCsn-QQV1NJbysxSTB7aI

Groups of rows with the same color share the same similarity key, indicating they are considered similar records. This is especially powerful when combined with other columns of available data as part of the match query.

Overview

Interzoid's Organization Matching Snowflake Native Application addresses the issues of inconsistency and redundancy in company, institution, or organization names within data tables. These issues can otherwise hinder accurate data analysis, customer communication, data-driven processes, AI model effectiveness, and other data-centric activities.

By leveraging specialized algorithms, machine learning, extensive knowledge bases, and fine-tuned AI models, the application generates a canonical key (a textual string) using Interzoid's Organization Matching API. This key helps identify and match "similar" organization name data values, whether within a single table or across multiple tables, using simple SQL statements on the Snowflake data platform. The functionality is made available pre-integrated as a "User-Defined Function" (UDF) and can be accessed as part of a SQL statement. Examples of similarity keys are provided below.

Features

  • Generation of similarity keys helps to enable significant data quality improvement by identifying inconsistent data, discovering duplicate records, addressing matching challenges across joins, and more.
  • Snowflake's Native Application platform makes it easy and fast to get started identifying data consistency and quality issues in any Snowflake table.
  • Simply install the app from Snowflake Marketplace, obtain an API key from Interzoid, provide it as a "Secret" using Snowflake SQL, and you're off and running.

Snowflake Marketplace Installation

  1. Log in to your Snowflake account.
  2. Navigate to the Snowflake Marketplace.
  3. Search for "Interzoid Org Match".
  4. Once located, click "Get" and follow the Snowflake installation instructions to install the native application to your Snowflake account for use.

Initial Setup

  1. Obtain your Interzoid API License Key by registering at www.interzoid.com.
  2. Enter the API License Key in the Snowflake Secrets Manager using the Security icon in the upper right on the installed Application's main page. On the 'Privileges' tab, click 'Add' next to the API License Key object, enter your API key, and click 'Configure'.
  3. In the same security section, click on the 'Connections' tab and click 'Review' on the api.interzoid.com connection, and then 'Connect'. This will complete the setup of the application and the external API access. Copy the (database.schema.secret) value of the 'Authentication with Interzoid API Key' field in this Connections tab of the Security panel, as your GRANT statement values for secret authorization may be different in the configuration script below.
  4. Run the following configuration script in a Snowflake SQL Worksheet. This script sets the correct privileges, and then creates a test database and schema as an example to try out use of the API within the created User Defined Function (UDF). This script can be customized to provide authorization and access to your own databases, schemas, and tables so you can immediately begin performing data quality analysis and increasing match rates on your own data.
USE APPLICATION interzoid_org_match_app;

GRANT USAGE ON DATABASE INTERZOID_ORG_MATCH_APP_APP_DATA TO APPLICATION interzoid_org_match_app;

GRANT USAGE ON SCHEMA INTERZOID_ORG_MATCH_APP_APP_DATA.CONFIGURATION TO APPLICATION interzoid_org_match_app;

-- Use your 'Authentication with Interzoid API Key' (database.schema.secret) as described above in the initial setup
GRANT USAGE ON SECRET INTERZOID_ORG_MATCH_APP_APP_DATA.CONFIGURATION.INTERZOID_ORG_MATCH_APP_INTERZOID_AUTH_KEY TO APPLICATION interzoid_org_match_app;

Running the Interzoid Org Match App

The following initializes the native application, which then enables the execution of the sample SQL statements using the Interzoid similarity key functionality. This demonstrates how the function can be called a single value at a time.

CALL interzoid_org_match_app.org_match_core.init_app(PARSE_JSON('{
        "secret_name": "interzoid_auth_key",
        "external_access_integration_name": "interzoid_external_access_integration",
    }'));

SELECT interzoid_org_match_app.org_match_core.org_simkey('Snowflake');
SELECT interzoid_org_match_app.org_match_core.org_simkey('snoflake inc');
SELECT interzoid_org_match_app.org_match_core.org_simkey('SNOW FLAKE CORP');

SELECT interzoid_org_match_app.org_match_core.org_simkey('Microsoft Inc');
SELECT interzoid_org_match_app.org_match_core.org_simkey('microsot');
SELECT interzoid_org_match_app.org_match_core.org_simkey('MICROS0FT');

SELECT interzoid_org_match_app.org_match_core.org_simkey('IBM');
SELECT interzoid_org_match_app.org_match_core.org_simkey('Intl businessmachines');

SELECT interzoid_org_match_app.org_match_core.org_simkey('Amazon.com');
SELECT interzoid_org_match_app.org_match_core.org_simkey('Amazon Incorp.');

Similarity Key Examples

These are examples of the algorithmically and AI model-based similarity key strings used to identify inconsistent organization name data. These keys can be used to identify, match, and cluster similar organization names, either within one table or across multiple tables. Note that similar organization names generate the same similarity key, which can then be used to match and cluster similar data.

Snowflake -> zPXpUnLwdW0UtBh8kNE4gA6DgwFBNzkm0djgmnyjgaM
snoflake inc -> zPXpUnLwdW0UtBh8kNE4gA6DgwFBNzkm0djgmnyjgaM
SNOWFLAKE CORP.	-> zPXpUnLwdW0UtBh8kNE4gA6DgwFBNzkm0djgmnyjgaM

Microsoft Inc -> xUhcrilUNsRiCthe7rXkIupHiCbhhgyLrKNAcXruwoA
microsot -> xUhcrilUNsRiCthe7rXkIupHiCbhhgyLrKNAcXruwoA
MICROS0FT -> xUhcrilUNsRiCthe7rXkIupHiCbhhgyLrKNAcXruwoA

IBM -> edplDLsBWcH9Sa7ZECaJx8KiEl5lvMWAa6ackCA4azs
Intl businessmachines -> edplDLsBWcH9Sa7ZECaJx8KiEl5lvMWAa6ackCA4azs

Amazon.com -> tyGzXZjfZUqhgqt6mqNZF8MCsn-QQV1NJbysxSTB7aI
Amazon Incorp. -> tyGzXZjfZUqhgqt6mqNZF8MCsn-QQV1NJbysxSTB7aI

Entire Snowflake SQL Table Example

Another way to try is to create a simple table inserting these company names randomly into a table to demonstrate usage of the similarity key generation function within a SQL statement on the Snowflake platform:

create database test_db;
create schema test_db.test_schema;

CREATE TABLE test_db.test_schema.organizations (org TEXT);

INSERT INTO test_db.test_schema.organizations (org) VALUES
     ('Snowflake'),
     ('MICROS0FT'),
     ('IBM Corp'),
     ('Amazon Incorp.'),
     ('microsot'),
     ('snoflake Inc'),
     ('Amazon.com'),
     ('Intl businessmachines'),
     ('SNOW FLAKE LLC.'),
     ('Microsoft Inc');

After the table is created, the following query generates a similarity key for each organization name using the Interzoid API behind-the-scenes. Sorting by the generated similarity key will then cluster similar organization names next to each other.

-- Use your 'Authentication with Interzoid API Key' (database.schema.secret) as described above in the initial setup
GRANT USAGE ON SECRET INTERZOID_ORG_MATCH_APP_APP_DATA.CONFIGURATION.INTERZOID_ORG_MATCH_APP_INTERZOID_AUTH_KEY TO APPLICATION interzoid_org_match_app;

GRANT USAGE ON DATABASE test_db TO APPLICATION interzoid_org_match_app;
GRANT USAGE ON SCHEMA test_db.test_schema TO APPLICATION interzoid_org_match_app;

USE APPLICATION interzoid_org_match_app;

SELECT org,interzoid_org_match_app.org_match_core.org_simkey(org) AS org_key
FROM test_db.test_schema.organizations
ORDER BY org_key;

Snowflake query results:

Sorted Snowflake Match Results

Sorting by similarity key clusters similar organization names together.

From here, the flexibility and possibilities are endless with your own data, including duplicate identification, using multiple-column matching, custom business logic, joins that overcome data inconsistency, and more.

Advanced Use Cases

The Interzoid Organization Matching Snowflake Native Application can be leveraged for various advanced use cases, including:

  • Data deduplication across large datasets
  • Use similarity keys as a search mechanism within large datasets
  • Signficantly increasing match rates when matching existing data to third party enrichment data
  • Enhancing data quality for AI & machine learning models
  • Building intermediary SQL tables for custom entity resolution
  • Combining similarity keys with other columns for matching data in specific contexts
  • Improving customer relationship management by consolidating duplicate entries
  • Facilitating more accurate data analysis and reporting throug efficient, consistent, and usable data
  • Streamlining data integration processes within data pipelines and part of ETL/ELT processes

Performance Considerations

While the Interzoid API is built for high performance with in-memory AI models, consider the following tips to optimize your queries:

  • Any table or view can be the target of Interzoid data quality analysis at any time as you experiment
  • High volume datasets can be split and run in parallel with Interzoid for faster processing
  • Utilize Snowflake's caching capabilities to improve repeated query performance
  • Monitor your Interzoid API usage to ensure you stay within your plan limits without additional costs

Best Practices

To get the most out of the Interzoid Organization Matching application:

  • Regularly analyze your data for data quality issues to ensure the most accurate analytics results
  • Combine the similarity key matching with other data quality processes for comprehensive data management
  • Use the matching results as a starting point for pre-analytics or pre-AI data assessments
  • Use additional columns besides similarity keys for matching purposes for best results

Support and Resources

For additional support and resources:

Ready to Enhance Your Data Quality?

Start using the Interzoid Organization Matching Snowflake Native Application today and experience the power of AI-driven data matching.

Get Started on Snowflake Marketplace